
Scripting Engine
Documentation for Graph

Version 4.4

Copyright © 2012 Ivan Johansen

ii

Table of Contents
Overview ... 1
Graph module ... 2

class Graph.TProperty .. 4
class Graph.TAxis ... 5
class Graph.TAxes ... 6
class Graph.TGuiFormatSettings ... 7
class Graph.TPlotSettings .. 8
class Graph.TGuiSettings .. 8
Graph elements ... 8

class Graph.TGraphElem .. 8
class Graph.TBaseFuncType .. 9
class Graph.TStdFunc ... 9
class Graph.TParFunc ... 9
class Graph.TPolFunc ... 10
class Graph.TTan ... 10
class Graph.TPointSeries ... 10
class Graph.TTextLabel .. 11
class Graph.TShading ... 11
class Graph.TRelation ... 12

vcl module .. 13

1

Overview
The scripting engine can be used to create plugins or to enter commands and access advanced features
directly in Graph. In both cases you need to install the 32 bit version of Python 3.2 from http://
www.python.org. Documentation of the Python language may be found installed with Python or online
[http://docs.python.org/3.2/].

Plugins
Plugins are Python scripts and are usually distributed in source form as .py files. The plugin files are placed
in the Plugins directory where Graph is installed, and will automatically be found and loaded by Graph.
A plugin will usually register some a callback function to be called when some event occur when the plugin
is loaded. This can for example be a function that is called when a menu item is selected. This function
will when do the actual work of the plugin. The work done when the plugin is loaded should be kept to a
minimum to keep loading time low.

Python interpreter
You can also use the scripting engine through the Python interpreter shown when you press F11 inside Graph.
In this interpreter you can write Python expressions and that way do very advanced things. It is also an easy
way to test code before it is used in a plugin.

http://www.python.org
http://www.python.org
http://docs.python.org/3.2/
http://docs.python.org/3.2/

2

Graph module
Graph.Axes

Structure of class Graph.TAxes with axes settings. These settings are stored in the .grf file.

Graph.Property
Structure of class Graph.TProperty with global settings. These settings are stored in the users
profile.

Graph.GuiFormatSettings
Structure of class Graph.TGuiFormatSettings with global formatting settings. Changes to these
settings are not stored.

Graph.PlotSettings
Structure of class Graph.TPlotSettings with global plot settings. Changes to these settings are not
stored.

Graph.GuiSettings
Structure of class Graph.TGuiSettings with global GUI settings. Changes to these settings are not
stored.

Graph.VersionInfo
A tuple containing the five components of the version number of Graph: Major, Minor, Release,
Build, and ReleaseLevel. All values except ReleaseLevel are integers; the release
level is 'beta' or 'final'. The VersionInfo value corresponding to the Graph version
4.3 is (4, 3, 0, 384, 'final'). The components can also be accessed by name, so
Graph.VersionInfo[0] is equivalent to Graph.VersionInfo.Major and so on.

Graph.Redraw()
Redraws the the graphing area.

Graph.Update()
Forces all graph elements, i.e. functions etc., to recalculate, redraw the plotting area and update the
function list.

Graph.CreateAction(Caption, OnExecute, Hint="", ShortCut="", IconFile=None,
OnUpdate=None, AddToToolBar=True)

Creates a new action with Caption as the shown text. Actions are used in the user interface, for
example in the toolbar and menus. OnExecute is a function with the action as argument that is called
when the action is triggered. Hint is an optional tooltip for the action. ShortCut is an optional
shortcut as a text string, e.g. "Ctrl+Shift+C". IconFile is a file name for an image file that will be
used as icon for the action. The file name can be a fully qualified path or a path relative to the Plugin
directory. OnUpdate is an optional function with the action as argument that will be called when Graph
is idle. This can be used to update the action, for example change its visibility state or enable/disable the
action. AddToToolBar indicates if the action will be available to add to the toolbar by the user.

Graph.AddActionToMainMenu(Action)
Adds an action to the main menu unde the Plugin top menu.

Graph.AddActionToContextMenu(Action)
Adds an action to the context menu for the function list.

Graph.LoadDfmFile(FileName)
Load a DFM text file given by FileName usually created by Embarcadero Delphi or C++ Builder. A
TForm object created from the file is returned.

Graph.LoadDefault()
Replaces the current coordinate system with the default settings. This is basically the same as selecting

File → New in the menu.

Graph module

3

Graph.BeginMultiUndo()
Used to group several related changes in the undo stack, so they can be undone as one thing. Call
EndMultiUndo() to end the grouping.

Graph.EndMultiUndo()
Used to end undo grouping started with BeginMultiUndo().

Graph.OnNew , Graph.OnLoad, Graph.OnSelect, Graph.OnClose, Graph.OnEdit,
Graph.OnAnimate, Graph.OnDelete, Graph.OnAxesChanged, Graph.OnZoom,
Graph.OnOptionsChanged, Graph.OnCustomFunctionsChanged, Graph.OnNewElem,
Graph.OnChanged, Graph.OnMoved

List Signature Description

OnNew Function() Called after a new coordinate system is created.

OnLoad Function() Called after a coordinate system is loaded from a file.

OnSelect Function(Elem) Called when an element in the function list has been
selected with the new element in Elem.

OnClose Function() Called when Graph is shutting down.

OnEdit Function(Elem) Called when the user wants to edit an element. The element
to edit is given in Elem. If the function handles the edit it
should return True to prevent Graph from handling it.

OnAnimate Function(Data,
Var, Value)

When an animation is created this is called every time
a frame is created. Data is the temporary data used for
creating the animation. Var is the constant changed in
every frame and Value is the new value of the constant.

OnDelete Function(Elem) Called when an element is about to be deleted.

OnAxesChanged Function() Called when the axes settings have been changed.

OnZoom Function() Called when the user has zoomed in out out.

OnOptionsChanged Function() Called when the user has made changes in the Options
dialog.

OnCustomFunctions Function() Called when the user has made changes to custom functions
or constants.

OnNewElem Function(Elem) Called when a new element has been created.

OnChanged Function(Elem) Called when an element has been changed by the user.

OnMoved Function(Elem) Called when the user has moved an element in the function
list.

Graph.Eval(Expression [, Trigonometry])
Evaluates Expression, which is a string with an expression like "sin(0.3)+3^2.5". The expression
is evaluated using real numbers only and the result is returned as a floating point number.
Trigonometry can be Graph.Radian or Graph.Degree. If Trigonometry is not specified,
the value in Graph.Axes.Trigonometry will be used. The function will raise the exception
Graph.EFuncError if an error occurs.

Graph.EvalComplex(Expression [, Trigonometry])
The same as Eval() except that this function evaluates using complex numbers, and a complex number is
returned.

Graph.SaveAsImage(FileName [, FileType, Width, Height])
Saves the current coordinate system as an image file, where FileName specifies the file name. If given
FileType specifies the file type, which can be Enhanced Metafile (1), Scalable Vector Graphics (2),
Bitmap (3), PNG (4), JPEG (5) or PDF (6). If FileType is not specified, the format will be guessed

Graph module

4

from the extension in the file name. Width and Height specifies the resolution of the image file. If
they are left out, the same resolution as shown on the screen will be used.

Graph.Selected
This is the currently selected item in the function list. Don't try to change this. Instead you can change
Graph.FunctionList.Selected.

Graph.Constants
This is the interface to the Custom functions/constants dialog. The index is the name of the constant
or function. The value is a tuple where the first element is either a numeric value or a text defining
the function or constant. The rest of the elements in the tuple are the parameters to the function.
A constant does not have any parameters. For example a constant R=8.314472 can be created as
Graph.Constants["R"] = (8.314472,) A custom function as sinc(x)=sin(x)/x can be created
as Graph.Constants["sinc"] = ("sin(x)/x", "x")

Graph.CustomFunctions
This can be used to create custom functions implemented in Python. CustomFunctions is a dictionary
where the key is the function name and the value is the Python function. For example the function
sinc(x)=sin(x)/x can be implemented in Python like this: Graph.CustomFunctions["sinc"] =
lambda x: math.sin(x)/x

Graph.FunctionList
This is a list of Graph.TGraphElem elements which are plotted by Graph. It is the same list that is
shown in the GUI. To plot an element, you just add it to the list. To make sure the undo functionality
works, you should not change an element already in the list. Instead you should replace the old element
in the list with a new element. Graph.FunctionList.Selected can be used to read and set the selected
element in the GUI.

Graph.PluginData
PluginData is a dictionary like object where a plugin can store data. The data is stored in the .grf file.
Graph itself does not use this, it is only for use by plugins Every plugin should use a unique value as key
in the PluginData dictionary. The value assigned should be a tuple, which may contain anything that can
be passed to xmlrpc, e.g. tuples, lists, strings, numbers.

Graph.LoadFromFile(FileName, AddToRecent=True, ShowErrorMessages=True)
Loads a grf file from the file specified by FileName. If AddToRecent is True, the file name is added
to the list of recent files in the File menu. If ShowErrorMessages is True, a dialog with error
information is shown if a problem occur, else errors are ignored. The function returns True if the file was
loaded without errors, else False is returned.

Graph.SaveToFile(FileName, Remember=True)
Saves the current data to a grf file specified by FileName. If Remember is True, Graph will remember

the file name and use it when saving with File → Save.

Graph.Import(FileName)
Imports the content of a grf file specified by FileName into the current coordinate system, excluding axes
settings. An exception is thrown on errors.

Graph.ImportPointSeries(FileName, Separator=0)
Imports the content of a text file as one or more point series. Separator indicates the separator used. It
is usually ',', ' ', ';' or '\t'. If Separator is 0, the actual separator is auto detected from the content of the
file. An exception is thrown on errors.

class Graph.TProperty
TProperty.RoundTo

Indicates the number of decimals used when showing numbers.

TProperty.SavePos
If True the window size and position is saved at program termination.

Graph module

5

TProperty.ComplexFormat
This indicates the format used when showing complex numbers. It can be Graph.cfReal,
Graph.cfRectangular or Graph.cfPolar.

TProperty.CheckForUpdate
When this is True Graph will check for updates when started.

TProperty.DefaultFunction, TProperty.DefaultPoint, TProperty.DefaultPointLine,
TProperty.DefaultShade, TProperty.DefaultTrendline, TProperty.DefaultRelation,
TProperty.DefaultTangent, TProperty.DefaultDif

A tuple with default settings for functions, point markers, point lines, shadings, trendlines, relations,
tangents and derivatives with style, color and size.

TProperty.DefaultPointLabelFont, TProperty.DefaultLabelFont
VCL object of type TFont with default font settings for point series labels and text labels.

TProperty.ShowTipsAtStartup
Indicates if Tip of the Day should be shown at startup.

TProperty.Language
This indicates the currently selected GUI language.

TProperty.FontScale
This specifies the scaling in percent of the user interface, including forms and fonts. The default is 100.

TProperty.CustomDecimalSeparator
This specifies if another decimal separator than the one from the locale settings should be used when data
is imported and exported.

TProperty.DecimalSeparator
This is the decimal separator used for importing and exporting of data when CustomDecimalSeparator
is True.

class Graph.TAxis
The TAxis class represents settings for one of the axes. You cannot create new instances of this class but
should access it through Graph.Axes.xAxis or Graph.Axes.yAxis.

TAxis.Min
The minimum value of the axis.

TAxis.Max
The maximum value of the axis.

TAxis.LogScl
Specifies if the axes is scaled logarithmic.

TAxis.MultipleOfPi
Specifies if numbers, tick marks and grid lines should be based on numbers that are a multiple of #
instead of integers.

TAxis.ShowLabel
If True the text specified in Label will be shown next to the axis.

TAxis.ShowNumbers
If True numbers will be shown along the axis at the position of the tick marks.

TAxis.ShowTicks
Id True, tick marks are shown along the axis. The distance between the tick marks are given in TickUnit.
If LogScl is True, the grid lines are shown at TickUnitN where N is an integer.

Graph module

6

TAxis.ShowGrid
If True, grid lines are shown perpendicular to the axis. The distance between the grid lines are given in
GridUnit. If LogScl is True, the grid lines are shown at GridUnitN where N is an integer, with minor
grid lines between the major grid lines.

TAxis.AutoTick
If True the value in TickUnit will be automatically calculated every time there is a change.

TAxis.AutoGrid
If True the value in GridUnit will be automatically calculated every time there is a change.

TAxis.Label
This specifies a text string that will be shown next to the axis when ShowLabel is True.

TAxis.AxisCross
A floating point value indicating the axis crosses the other axis.

TAxis.TickUnit
The distance between the tick marks on the axis. If AutoTick is True, this value will be automatically
calculated every time the image is updated.

TAxis.GridUnit
The distance between grid lines on the axis. If AutoGrid is True, this value will be automatically
calculated every time the image is updated.

TAxis.Visible
When True the axis is shown in the image.

TAxis.ShowPositiveArrow
When True an arrow is shown in the positive end of the axis.

TAxis.ShowNegativeArrow
When True an arrow is shown in the negative end of the axis.

TAxis.NumberPlacement
This specifies where the numbers along the axis is shown relative to the tick marks. For the x-axis, the
numbers can be centered below (Graph.npCenter) or shown below a little to the left of the tick
marks (Graph.npBefore). For the y-axis, the numbers can be centered to the left of the tick marks
(Graph.npCenter) or shown below to the left (Graph.npBefore).

class Graph.TAxes
TAxes.xAxis

Structure of class Graph.TAxis with settings for the x-axis.

TAxes.yAxis
Structure of class Graph.TAxis with settings for the y-axis.

TAxes.AxesColor
This specifies the color of the axes. See the VCL documentation [http://docwiki.embarcadero.com/VCL/
en/Graphics.TColor].

TAxes.GridColor
This specifies the color of the grid lines. See the VCL documentation [http://docwiki.embarcadero.com/
VCL/en/Graphics.TColor].

TAxes.BackgroundColor
This specifies the background color of the image. See the VCL documentation [http://
docwiki.embarcadero.com/VCL/en/Graphics.TColor].

http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor
http://docwiki.embarcadero.com/VCL/en/Graphics.TColor

Graph module

7

TAxes.NumberFont
This specifies the font used to write the numbers along the axes. See the VCL documentation [http://
docwiki.embarcadero.com/VCL/en/Graphics.TFont].

TAxes.LabelFont
This specifies the font used to write the labels shown at the end of the axes. See the VCL documentation
[http://docwiki.embarcadero.com/VCL/en/Graphics.TFont].

TAxes.LegendFont
This specifies the font used to write the text in the legend. See the VCL documentation [http://
docwiki.embarcadero.com/VCL/en/Graphics.TFont].

TAxes.TitleFont
This specifies the font used to write the title above the coordinate system. See the VCL documentation
[http://docwiki.embarcadero.com/VCL/en/Graphics.TFont].

TAxes.Title
This specifies the title shown above the coordinate system. Set this to an empty string to not show a title.

TAxes.ShowLegend
When True the legend will be shown in the coordinate system.

TAxes.Trigonometry
This specifies if trigonometric functions calculate in radians or degrees. Valid values are
Graph.Radian and Graph.Degree

TAxes.AxesStyle
Indicates how the axes are show. Valid values are Graph.asNone, Graph.asCrossed and
Graph.asBoxed.

TAxes.LegendPlacement
This specifies where the legend is placed in the image. Valid values are Graph.lpCustom,
Graph.lpTopRight, Graph.lpBottomRight, Graph.lpTopLeft and
Graph.lpBottomLeft.

TAxes.LegendPos
This is a tuple with the (x,y) coordinates of the top left corner of the legend. It is only used when
LegendPlacement is Graph.lpCustom.

TAxes.CalcComplex
When True Graph will use complex numbers when plotting functions, which will slow down the plotting.
It does not affect other evaluations than the plotting of functions.

TAxes.GridStyle
Indicates how the grid is shown. Valid values are Graph.gsLines, the default which is shown as
lines, and Graph.gsDots, which shows a dot where the grid cross.

class Graph.TGuiFormatSettings
TGuiFormatSettings.CartesianPointFormat

This string specifies the format used to show cartesian coordinates for point series. %1% in the string
indicates the x-coordinate and %2% indicates the y-coordinate.

TGuiFormatSettings.DegreePointFormat
This string specifies the format used to show polar coordinates in degrees for point series. %1% in the
string indicates the angular coordinate and %2% indicates the radial coordinate.

TGuiFormatSettings.RadianPointFormat
This string specifies the format used to show polar coordinates in radians for point series. %1% in the
string indicates the angular coordinate and %2% indicates the radial coordinate.

http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont
http://docwiki.embarcadero.com/VCL/en/Graphics.TFont

Graph module

8

class Graph.TPlotSettings
TPlotSettings.AxisWidth

Width of the axes on the screen in pixel.

TPlotSettings.GridWidth
Width of grid lines on the screen in pixels.

TPlotSettings.xNumberDist, TPlotSettings.yNumberDist
Specifies the distance in pixels of the numbers on the screen from the x- and y-axis.

TPlotSettings.TickWidth, TPlotSettings.TickLength
Specifies the width and length of the tick marks in pixels on the screen.

class Graph.TGuiSettings
TGuiSettings.MajorZoomIn, TGuiSettings.MinorZoomIn, TGuiSettings.MajorZoomOut,
TGuiSettings.MinorZoomOut

When zooming the zoom rate specifies how large a unit will be after on both axes compared to before the
zoom. This means that a zoom rate of 1 will make no change. A zoom rate of 2 will double the size on
both axes while a zoom rate of 0.5 will half the size of both axes. MajorZoomIn and MajorZoomOut
are used when zooming in and out normally, while MinorZoomIn and MinorZoomOut are used when
zooming in and out when Shift is held down.

TGuiSettings.MajorStepSize, TGuiSettings.MinorStepSize
When stepping up, down or sideways, the step size indicates how much is stepped as fraction of the
image size, i.e. 0.1 means that each step is 10% of the image size. MajorStepSize is used when stepping
normally, while MinorStepSize is used when stepping with Shift held down.

TGuiSettings.MouseZoomIn, TGuiSettings.MouseZoomOut
When zooming in or out with the mouse scrolling wheel or similar, the zoom rate specifies how large a
unit will be after on both axes compared to before the zoom. This means that a zoom rate of 1 will make
no change. A zoom rate of 2 will double the size on both axes while a zoom rate of 0.5 will half the size
of both axes.

Graph elements
class Graph.TGraphElem

TGraphElem.Visible
This specifies if the element is shown in the graphing area.

TGraphElem.ShowInLegend
Indicates if the element is shown in the legend.

TGraphElem.LegendText
This is the text string shown in the legend.

TGraphElem.Parent
This is a read only attribute indicating the parent element when the object is in the function list.

TGraphElem.PluginData
PluginData is a dictionary like object where a plugin can store data local to an element. The data is
stored in the .grf file. Graph itself does not use this, it is only for use by plugins Every plugin should use
a unique value as key in the PluginData dictionary. The value assigned should be a tuple, which may
contain anything that can be passed to xmlrpc, e.g. tuples, lists, strings, numbers.

TGraphElem.ChildList
This is a list of child elements as shown in the function list.

Graph module

9

TGraphElem.Clone()
This creates a new copy of the object.

class Graph.TBaseFuncType

TBaseFuncType.sList
This is a list of data points used to plot the function. Each entry is a tuple with 3 elements, the
independent variable, x-coordinate and y-coordinate.

TBaseFuncType.Points
This is a list of pixel coordinates used to plot the function.

TBaseFuncType.PointNum
This is a list of values indicating the number of continues points in each segment.

TBaseFuncType.Color
This specifies the color of the function.

TBaseFuncType.Size
This specifies the width of the function in pixels on the screen.

TBaseFuncType.Style
This specifies the line style of the function.

TBaseFuncType.From, TBaseFuncType.To
From and To specifies the the range of the function. Standard functions may use float("-inf") and
float("inf") for an infinite range.

TBaseFuncType.StartPointStyle, TBaseFuncType.EndPointStyle
These indicates the style of the end points. Use 0 if you don't want an endpoint.

TBaseFuncType.DrawType
This indicates how the functions is plotted. Valid values are Graph.dtAuto, Graph.dtDots and
Graph.dtLines.

TBaseFuncType.MakeDifFunc()
This method will create and return the first derivative of the function.

TBaseFuncType.Eval(t)
This evaluates the function at the specified independent variable t. The result is a tuple if the (x,y)
coordinate pair.

TBaseFuncType.CalcArea(From, To)
Calculates the signed area over the range between From and To by numeric integration. The calculated
area is between the function and the x-axis for standard and parametric functions, while it is the area
between the function and the center for polar functions.

class Graph.TStdFunc

class Graph.TStdFunc(Str)
Creates a standard function from the expression in Str with "x" as the independent variable.

TStdFunc.Text
This is the same string as was passed to the constructor.

class Graph.TParFunc

class Graph.TParFunc(xStr, yStr)
Creates a parametric function from the expressions in xStr and yStr where the independent variable is
"t".

Graph module

10

TParFunc.xText TParFunc.yText
These are the same strings as was passed to the constructor.

class Graph.TPolFunc

class Graph.TPolFunc(Str)
Creates a polar function from the expression in Str where the independent variable is "t".

TParFunc.Text
This is the same string as was passed to the constructor.

class Graph.TTan

class Graph.TTan()
Creates a new tangent or normal. It must be attached to a function to be plotted.

TTan.Valid
This property is True if the tangent is valid, i.e. the function has a first derivative at t.

TTan.t
This is the value where the tangent/normal interacts with the its parent function.

TTan.TangentType
This indicates if the object is a tangent or normal. Valid values are Graph.ttTangent and
Graph.ttNormal.

class Graph.TPointSeries

class Graph.TPointSeries()
Creates a new point series.

TPointSeries.FillColor, TPointSeries.FrameColor, TPointSeries.Size,
TPointSeries.Style

These properties sets the color filling the markers, the border color of the markers and the style of the
markers.

TPointSeries.LineColor, TPointSeries.LineSize, TPointSeries.LineStyle
These properties sets the color, size and style of the line between the markers.

TPointSeries.xErrorBarType, TPointSeries.yErrorBarType
These specifies the type of vertical and horizontal error bars. Valid values are Graph.ebtNone for no
error bars, Graph.ebtFixed for fixed size error bars, Graph.ebtRelative for error bars being a
percentage of the coordinate value, and Graph.ebtCustom for a custom specified error bar for every
point.

TPointSeries.xErrorValues, TPointSeries.yErrorValues
These contains the value used for the error bars when xErrorBarType or yErrorBarType is
Graph.ebtFixed or Graph.ebtRelative.

TPointSeries.Interpolation
This specifies the interpolation algorithm used for drawing lines between the markers. Valid
values are Graph.iaLinear, Graph.iaCubicSpline, Graph.iaHalfCosine and
Graph.iaCubicSpline2.

TPointSeries.ShowLabels
Set this to True to show coordinate labels next to the markers.

TPointSeries.Font
This sets the font used when drawing the coordinate labels.

Graph module

11

TPointSeries.LabelPosition
This specifies where the coordinate labels are placed relative to the markers. Valid values
are Graph.lpAbove, Graph.lpBelow, Graph.lpLeft, Graph.lpRight,
Graph.lpAboveLeft, Graph.lpAboveRight, Graph.lpBelowLeft and
Graph.lpBelowRight.

TPointSeries.PointType
This specifies if the coordinates in Points are in polar or cartesian coordinates. Valid values are
Graph.ptCartesian and Graph.ptPolar.

TPointSeries.Points
This is a list of tuples with (x,y) coordinates for the points.

TPointSeries.PointData
This is a list with a tuple with 4 elements for each point. The tuple contains the first coordinate, second
coordinate, x-error and y-error, all in text form. The first and second coordinates are (x,y) coordinates if

PointType is Graph.ptCartesian, and (θ,r) coordinates if PointType is Graph.ptpolar.

class Graph.TTextLabel

class Graph.TTextLabel()
Creates a new text label object.

TTextLabel.Text
This is the text in the label in Rich Text format.

TTextLabel.BackgroundColor
This is the background color of the label. Use 0x1fffffff for transparent.

TTextLabel.Placement
This specifies the placement of the label. Valid values are Graph.lpUserTopLeft,
Graph.lpAboveX, Graph.lpBelowX, Graph.lpLeftOfY, Graph.lpRightOfY,
Graph.lpUserTopRight, Graph.lpUserBottomLeft and Graph.lpUserBottomRight.

TTextLabel.Rotation
This specifies the rotation of the label in degrees.

TTextLabel.xPos, TTextLabel.yPos
xPos and yPos indicates the (x,y) coordinate of the label when Placement is
Graph.lpUserTopLeft, Graph.lpUserTopRight, Graph.lpUserBottomLeft or
Graph.lpUserBottomRight.

class Graph.TShading

class Graph.TShading()
Creates a new shading object. It must be attached to a function to be plotted.

TShading.ShadeStyle
This specifies the type of shading. Valid values are Graph.ssAbove, Graph.ssBelow,
Graph.ssXAxis, Graph.ssYAxis, Graph.ssBetween and Graph.ssInside.

TShading.BrushStyle
This is a vcl.TBrushStyle that specifies the brush style used to plot the shading.

TShading.Color
This specifies the color of the shading.

TShading.Func2
This must specify the second function when BrushStyle is Graph.ssBetween.

Graph module

12

TShading.sMin, TShading.sMax
This is the start and end values on the function for the shading.

TShading.sMin2, TShading.sMax2
When ShadeStyle is Graph.ssBetween this is the start and end value on Func2 for the shading.

TShading.ExtendMinToIntercept, TShading.ExtendMaxToIntercept,
TShading.ExtendMin2ToIntercept, TShading.ExtendMax2ToIntercept

When True, sMin and sMin2 are decreased and sMax and sMax2 are increased until the function
is crossing the axis, the edge of the graphing area, itself or another graph depending of the value in
ShadeStyle.

TShading.MarkBorder
When True a line will be drawn around the shading.

class Graph.TRelation

class Graph.TRelation(Str, [ConstraintStr])
Creates a new relation object with the relation specified in Str and an optional constraint specified in
ConstraintStr.

TRelation.BrushStyle
This is a vcl.TBrushStyle that specifies the brush style used to plot inequalities.

TRelation.Color
This specifies the color of the relation.

TRelation.RelationType
This read only attribute indicates if the relation is an equation (Graph.rtEquation) or inequation
(Graph.rtInequality).

TRelation.Size
This is the width of the plot of the inequation or the width of the borderline around the inequality. Size
may be 0 if no borderline is wanted.

TRelation.Text
This is the text of the equation or inequality.

TRelation.Constraints
This is the text of the constraints.

TRelation.Eval(x, y)
Evaluate the relation at the given x- and y-coordinates and return the result.

13

vcl module
The vcl module is an interface to the Embarcadero Visual Component Library (VCL) used by Delphi and
C++ Builder. Documentation for the VCL can be found online at http://docwiki.embarcadero.com/VCL/en/
Main_Page.

Python is case sensitive, but as the VCL is written in Delphi, which is not case sensitive, much of the
vcl module is not case sensitive. This means it doesn't care if you write TForm or tform. However it is
recommended to use the same case as shown in the documentation as the case sensitivity may change in the
future.

Classes
VCL classes as TForm and TButton are found in the vcl module. You create a new VCL object by
instantiating a VCL class in the same way you always create Python objects. All positional arguments
are passed on to the constructor for the VCL class. VCL classes can have several constructors. The
first constructor that matches the passed arguments will be used, e.g. vcl.TForm(None) will use
the constructor that takes an owner component as argument. Keyword arguments will be assigned to
the properties of the object after the object has been constructed, e.g. Form = vcl.TForm(None,
Caption="Test dialog") is the same as Form = vcl.TForm(None); Form.Caption =
"Test dialog"

Functions
Global functions as TextToShortCut can be found in the vcl module and are called like
vcl.TextToShortCut("Ctrl+A").

Objects
The vcl module contains some global objects as Application, Mouse, Clipboard and Screen.
Other objects can be directly constructed or returned from a function. None in Python can be used to pass a
NULL pointer to a VCL function instead of an object.

The Python object is a proxy object to the actual VCL object. Per default VCL objects created directly in
Python are owned by the proxy object. The VCL object will therefore be destroyed when the proxy object in
Python is destroyed. Objects returned from a function or accessed through properties are not owned and will
continue to exist after the proxy object has been destroyed. The proxy object has an _owned property that
specify if the proxy object owns the underlying VCL object.

Object methods and properties are accessed as you normally would in Python so you can use Form.Show()
and Form.Caption = "Test". If a method is overloaded, the first one that matches the parameters will
be called.

Events
Events can either be global functions or methods in an object, which can be assigned like properties. The
event handler must be able to take the expected arguments which will be passed.

Sometimes an event takes a reference as argument. In that case the actual argument is an object with a
property called Value that can be used to access the actual referenced value.

Types
Most types can be used directly, e.g. strings, numbers and booleans. VCL sets are converted to
Python strings, e.g. Form.Font.Style = "fsBold,fsItalic" will make the font bold and
italic. Enumerations are always returned as strings but can be assigned as strings or integers, e.g.
Form.WindowState = "wsMaximized" and Form.WindowState = 2 will both maximize the
window. Records are converted to tuples with one element for every item in the record. Similarly a function
that expects a record must be passed a tuple, e.g. Form1.ClientToScreen((100,50)).

http://docwiki.embarcadero.com/VCL/en/Main_Page
http://docwiki.embarcadero.com/VCL/en/Main_Page

vcl module

14

VCL example

This script will show a dialog where you can enter a value.
The event will check that only digits are entered.
If the OK button is pressed, the entered value will be printed to the console.
import vcl
import string

def HandleKeyPress(Sender, Key):
 if not Key.Value in string.digits:
 Key.Value = '\0'

Form = vcl.TForm(None, Caption="Value dialog", Width=190, Height=110)
Label = vcl.TLabel(None, Parent=Form, Caption="Value:", Top=12, Left=8)
Edit = vcl.TEdit(None, Parent=Form, OnKeyPress=HandleKeyPress, Text="0", Top=8, Left=50)
OkButton = vcl.TButton(None, Parent=Form, Caption="OK", Default=True, ModalResult=1,
 Top=50, Left=8)
CancelButton = vcl.TButton(None, Parent=Form, Caption="Cancel", Cancel=True, ModalResult=2,
 Top=50, Left=100)
if Form.ShowModal() == 1:
 print("Result:", Edit.Text)

	Scripting Engine Documentation for Graph
	Table of Contents
	Overview
	Graph module
	class Graph.TProperty
	class Graph.TAxis
	class Graph.TAxes
	class Graph.TGuiFormatSettings
	class Graph.TPlotSettings
	class Graph.TGuiSettings
	Graph elements
	class Graph.TGraphElem
	class Graph.TBaseFuncType
	class Graph.TStdFunc
	class Graph.TParFunc
	class Graph.TPolFunc
	class Graph.TTan
	class Graph.TPointSeries
	class Graph.TTextLabel
	class Graph.TShading
	class Graph.TRelation

	vcl module

